FPGA Al DATAPATHS

June 2018



Density and Flexibility in Computation

Floating Point & Fixed Point

Integer — many different sizes — including asymmetric - mix and match
Floating Point — FP32 and now BFLOAT16

Mixed Representation — Floating Point without Floating Point resources
Structures — Individual MAC or DOT - of any size

Data Movement — 100% sustained to peak

Plus massive internal bandwidth
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FPGA 101

Customers buy logic Base function: 4/6 LUT + register

But they pay for routing ANDZ2 gate = XORG6 gate

But not really

Variable Precision
DSP Blocks with

Transceiver Channels

Not enough routing — wire limited

Hard IP Per Transceiver,
8bi10b PCS, 84b/6ED
PCS, 10GBase-KR FEC,

Registers are free

Fractional PLLs

— Effective FPGA design is mapping to
all of the logic available

Memory Blocks

WO PLLs

Hard Memory
Confrollers, General
Purpase 10 Cells,
LwDs

And all of the wires

This is much more difficult
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FPGA Scale (Current 14nm device)

intel.

INTEL" STRATIX" 10 GX/SX PRODUCT TABLE

1M 6-LUTs

(2M sum bits)

=, 160K 4x4INT
Intel’ Stratix' %0 120TOPs@750MHz

12K Cache Ports

— s e sm = = /= \ /A=
Logic elements (LEs) 378,000 841,000 1,624,000 2422000 J 0 4,463,000
Adaptive logic modules (ALMs) 128,160 2 284960 550,540 s213s0_J \ 1512820
ALM registers 512,640 829,440 1,139.840 2202160 3284500 3 6051280

tel* HyperFlex™ FPGA architecture Mil
. ces synthesizable
2 M20K memory blocks 1,537 3477 5851 9963 172 7033
8 [Maokmemory s 30 8 114 105 137
= MLAB memory si ) 2 3 4 8 13 5 23

12K FP32

Variable-precision digital signal processing {DSP) blocks

18 x 19 muitip!

Operators

=

Peak fixed-point performance (TMACS)

Peak floating-point 'ormance (TFLOPS)

Secure device manager

9TFLOPs@750MHz

Hard processor system*

Maximum user |/O pins

Maximum LVDS pairs 1.6 Gbps (RX or TX)

Total full duplex transceiver

unt

GXT full duple: insceiver count (up to 30 Gbps)

GX full duplex transceiver count (up to 17.4 Gbps)

/O and Architectural Features

PCI Express* (PCle*) hard intellectual property (IP) blocks
(Gen3 x16)

RLDRAM 3, HMC,

+100s Tbps local memo
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FPGA FLOATING POINT



Floating Point DSP Block

Area, aspect ratio and interface largely o
dictates DSP Block relationship to device

Wire density key

o

Pitch Match to architecture
2 major innovations o
D\

Support FP Multiplier RNE inside integer
datapath

While supporting 40 legacy integer modes

Vector Mode builds any size recursive
reduction trees
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Direct Dot Product Support

1. AB,C..I[J all arrive at the same time 3. Using soft routing, first sum of
f k to DSP Block i
2. AB+CD, EF+GH, 1J+KL computed products fed back to DSP Block inputs

(Re-use systolic connections) 4. Re-use sequential connections,
calculate next level of tree

?3:‘ f ':I#.?Z %32 %32 %32 %}2 ?32 %32 %32 %32 %32 ?32 %32 %32
[ ] [ J,\I [ 11 ] [ ] [ 1] IL‘A ] [ 1] ] [ ] [ 11 | [ ] [ ]
%) %) &9 X & Soft connections can
L U [l L [ 1 be pipelined to any
ps Wiz e iz iz 2
X % N
=5 — —
AB?-(;:D AB+C D?-E;-#GH EFEL;:;-[ AB+CD+EF +Gl-;\-J+-U+KL+MN+OP | +Ul:]i
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Yes Virginia, there is a BFLOAT16

Announced at Intel Al DEVCON in May 2018
All Intel products, including FPGA

What is BFLOAT167?
Introduced by Google February 2018
FP32 reduced to 16 bits

INTEL AI DEVCON 2018

Truncate 16 Mantissa LSBs SAN FRANCISCO l MAY 23-24




FPGA FLOATING POINT
[WITHOUT FLOATING POINT)



Floating Point Compiler

Automatically extracts inter-operator
redundancy in group of floating point operator

Typically 50% area reduction
Typically 50% latency reduction

FPGA floating point system design (soft logic
based) becomes possible

Single, Double, or Custom Precision (BFP16)

Mixed precisions can be directly mixed with
optimized CAST() operators

+f-

Mantizsal Mﬂﬁz Exponent1 Exponent2

&

Slightly larger,
wider operands

Mantissa

mantissa,
not just [1,2)
w

\

™

Remove
Normalization

Exponent

Do not apply special and
error conditions here
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FP without FP . i

Polynomials can have many operators i b

Expensive — power, area, and latency | S0 €2

Most polynomials have monotonic ~ L_____ LeEee—— & _____
relationship between terms

N
=
Ih:
| !
—
oy
my
2
[
]
-
v'

First observation : normalization and ;:"7::::::::_.:'.;:::;5:::::::'::':.:':.:;7:;::;7:::;1::::::

denormalization redundant ; ArE===
If relationship between terms is known, all Pt iy SRR

shifts can be pre-computed monotonically

FPGA:s filled with small ROMs (6LUTSs) e




INTEGER - SOFT



Paper Review

Use 100% of logic density

More importantly, use 100% of af2:0]:b[2:0]
routing density

(Po2p11) @B p12|| Po2®P1a

Independent vs. redundant i - § P hak
connections | [ i ]

AUX; @ p 2 P22 21| |AUX | |AUX | | P2 | | Poa PLo Po.o i

Refactor to greater than 100% logic }_i_( }I_{ \;:l_{ \,:I_{ }\_-\é
density Y Y Y Y

rs ra r3 r r ro

Use Out-of-band functions

Collapse to single logic level if
possible
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Soft Logic Multiplier for Free?

A[3:1] B[3:1] C[3:1] D[3:1]

3x3 Multiplier 3 ALMs

1 1
ALM - two arithmetic bit output i # ﬁ
3 ALMs = 6 outputs = min. 3x3 | |

No point in putting 3x3 multipliers in

. : C . n v oYy vy
hard logic h +
o vEbE

System Cost (routing, logic, B+ CD

power, latency) greater than using
inline

Expand to 4x4 and larger
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Subset Multiplier Extraction

| thought you just said soft logic multipliers were free?

Not so for BFLOAT16 or near BFLOAT (15,14,etc)

Multiple 6x6, 7x7 — or asymmetric such as 6x7
Can also implement adder tree or portions of it in DSP Block

Makes sense if datapath is physically placed near DSP Block

DSP Block needs to be inline

Mixture of hard and soft logic possible




ELEMENTARY FUNCTIONS



RNN and Hyperbolics

(o ‘,/"’/» "% “\\‘ C, ft = O'(Wf [ht—ll xt] + bf)

i = o(Wilheo, x] + bfi)

Clt = tanh(Wc[ht_l,xt] + bc)

| h o = p(Wplhe—1, x¢] + by)

t = ft* Crq +ip x C'y

h: = o; * tanh(C;)

Critical Path
he = oy * tanh(f; * C_q +i * tanh(W,[he_1, x¢]) + b;)

tanh(x) Matrix-vector multiply
12 DSP Blocks. 64 DSP Blocks

Latency = 100 total Latency = 20

Reducing tanh(x) latency 50% = 70% performance increase!
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Hyperbolic Construction

tanh(a) + tanh(b)
1 + tanh(a) tanh(b)

\ 4

tanh(a) +

tanh(a + b) =

tanh(b) + tanh(c)
1 + tanh(b) tanh(c)

tanh(b) + tanh(c)
1 + tanh(b) tanh(c)

tanh(a+ b + ¢) =

1 + tanh(a)

\ 4

tanh(a) + tanh(b) + ¢
1 + tanh(a)(tanh(b) + ¢)

tanh(a+ b +¢) =
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REAL WORLD APPLICATION



Microsoft Brainwave

ISCA 2018 Paper
“96,000 multiply-accumulate units”
“287 GFLOPs/W"

“can run all DeepBench layers at under
4ms at batch 1"

“.23% to 75% of peak FLOPs for
medium to large LSTM/GRUs (>1500
dimension)”

Programmable Solutions Group
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A Configurable Cloud-Scale
DNN Processor for Real-Time Al

Jeremy Fowers  Kalin Ovicharov  Michuel Papamichael  Todd Massengill  Ming Liu
Daniel Lo Shlomi Alkalay  Michael Haselman  Logan Adams  Mahdi Ghandi
Stephen Heil  Prerak Patel  Adam Sapek  Gabriel Weisz  Lisa Woods
Sitaram Lanka ~ Steven K. Reinhardt  Adrian M. Caulfield  Eric S. Chung  Doug Burger

Microsoft

Abstrei—Interactive Al-powered services require low.
evaluation of deep neural metwork (DNN) models—aka
time AI". The growing demand for computationally expensive,
stateof-theart DNNs, coupled with diminishing performance
gains of general-purpase architectures, has fueled an explosion of
specialized Neural Processing Units (NPUs). NPUs for interactive
services should salisfy two requirements: :1; execution of DNN
models with low latency, high throughput, and high efficiency,
and 12) flexibility 1o accommodate evolving stateof-the-art mod-
ls fe.g., RNNs, CNNs, MLPs) without casily silicon updates.

“This paper describes the NPU architecture for Project Braine

ime AL The Brainwave

in lateney and throughput over state-of-the-art G
RNNs at a batch size of 1 The NPU attains this

processing a single sample. Inference, on the other hand, can
be much more latency sensitive, DNNs are increasingly used
in live, interactive services, such as web search, advertising,
interactive speech, and real-time video {e.g., for self-driving
cars), where low latency is required to provide smooth user
experiences, satisfy service-level agreements (SLAs), andfor
mect safety requircments.

Highly parallel architectures with deep pipelines, such as
GPGPUS, achieve high throughput on DNN models by batch-
ing evaluations, exploiting parallelism both within and scross
requests. This approach works well for offline training, where
the training data set can be partitioned into “minibaiches”,

using a single-threaded SIMD ISA paired with a distributed mi-
eroarchitecture capable of dispatching over 78 operations from
a single instruction. The spatially distributed microarchitecture,
scaled up 1o 96,000 multiply-accumulate units, is supported by
hicrarchical instruction decoders and schedulers coupled with
thousands of independently addressable high-bandwidth on-chip

memsories, and can trancparently exploit many levels of fine-grain
SIMD parallelism. When targeting an FPGA, microarchitectural
parameters such as native datapaths and numerical precision
can be “synthesis specialized” to models al compile time, enabling
high FPGA performance competitive with hardened NPUs. When
running on an Intel Stratix 10 280 FPGA, the Brainwave
NPU achieves performance ranging from ten to over thirty-live
teraflops, with no batching, on large, memory-intensive RNNs.

Index Terms—neural network hardwares sccelerator architec.
tures; field programmable gate arrays

L INTRODUCTION
Hardware acceleration of deep neural nﬂwnrks 1DNV£] is
oming as the of

DNN models has grown. Compared to general-parpose CPUS,
accelerators reduce both cost and latency for training and
serving leading-edge models. Forunately, the high level of
parallelism available in DNN models makes them amenable
o silicon acceleration. With evolving DNN-specific Features,
GPGPUs have been particularly successful at accelerating
DNN workloads. In addition. a Cambrian explosion of new
Neural Processing Unit (NPL) architectures is taking place.
driven by academic researchers, startups, and large companics.

Training and inference (evaluating a trained model) have
different requirements, however. Training is primarily a
throughpat-bound workload and insensitive to the latency of

25757 13X/1R/53 | 00 OIS [EEE
DO 10,11 09MSCA 201 B.00012

increasing without y impacting con-
vergence. However, systems aptimized for batch thraughput
typically can apply only a fraction of their resources 1o 1 single
request. In an online inference setting. requests ofien arrive one
at a time; a throughput architecture must cither process these
requests individually. Ieading to reduced throughpat while still
sustaining batch-cquivalent latency, or incur inereased latency
by waiting for multiple request arrivals to form a bateh.

We have developed a full-system architecture for DNN in-
ference that uses a different approach [1], [2]. Rather than driv-
ing up throughput at the expense of latency by exploiting inter-
request parallelism, the system reduces latency by exracting
as much parallelism as possible from individual requests. We
do not sacrifice throughput but achieve it as the disect result
of low single-request latency. We use the term “real-time AI”
to describe DNN inference with no baiching. This system,
called Project Brainwave (BW for shor) achieves much lower
latencies than equivalent technologies such ss GPGPUs on 3

basis, with

This paper details the architecture and microarchitecture
of the EW NPU, which is ar the heart of the BW system.
In its current form, the BW NPU is a DNN-optimized “soft
processor” synthesized onto FPGAs. Despite the lower clock
rate and higher area overheads that FPGAs incur, the BW
NPU achieves record-setting performance for real-ime AL
sustaining 35 Teraflops on large RNN benchmarks with no
batching. However, only onc of the techniques that the BW
NPU uses to achieve low latency on individual DNN requests
is tied to reconfigurable logic. and the rest could be applicd to
a “hard NPL™ with a higher clock rate bur reduced flexibility.

(a=11'puter
i




Brainwave Floorplan

FPGA MVU Kemel
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Source: Microsoft Presentation, HotChips2017
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CONCLUSIONS



Summary

FPGAs can mix IEEE754 FP, custom FP, integer, and combination of numerics
simultaneously

Elementary functions — multiple different numerics internally

Can change this from algorithm to algorithm, with multiple different
configurations

Very high internal bandwidth and unlimited configurability in connectivity

Computational Density and Flexibility







